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1. INTRODUCTION

Singularity formation in nonlinear partial differential equations is a topic of
current interest,(1) about which both authors have learned a great deal from
Leo Kadanoff, both directly (MB) and indirectly (TW). The present contri-
bution to this volume discusses gravitational collapse, a classical problem
in astrophysics that shares an important feature with problems that
Kadanoff has recently studied (see, e.g., ref. 2), in that there is presently
believed to be a "universal similarity solution" (in this case discovered by
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This paper considers the dynamics of a classical problem in astrophysics, the
behavior of spherically symmetric gravitational collapse starting from a uniform,
density cloud of interstellar gas. Previous work on this problem proposed a
universal self-similar solution for the collapse yielding a collapsed mass much
smaller than the mass contained in the initial cloud. This paper demonstrates
the existence of a second threshold—not far above the marginal collapse
threshold—above which the asymptotic collapse is not universal. In this regime,
small changes in the initial data or weak stochastic forcing leads to qualitatively
different collapse dynamics. In the absence of instabilities, a progressing wave
solution yields a collapsed uniform core with infinite density. Under some condi-
tions the instabilities ultimately lead to the well-known self-similar dynamics.
However, other instabilities can cause the density profile to become non-
monotone and produce a shock in the velocity. In presenting these results, we
outline pitfalls of numerical schemes that can arise when computing collapse.
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Larson(3)) to which a large class of initial data converge. However, gravita-
tional collapse differs from these examples in that it produces singularities
without dissipation. Without dissipation there is no a priori guarantee
for a (finite) basin of attraction for a "universal" singularity. This study
demonstrates that this problem contains a nonlinear threshold, above
which the asymptotic form of the collapse singularity is not universal: in
this regime slight changes in the initial data—or the presence of a small
stochastic noise source—can lead to convergence to (at least) three possible
asymptotic solutions near the singularity. One of the solutions was known
previously for marginally unstable collapse(3) and was thought to be
universal. Whether this sensitive dependence on initial data represents a
general property of singularity formation in nondissipative systems(4) is an
interesting question.

Gravitational collapse has been examined extensively in astrophysics
as a possible mechanism for the formation of planets and stars. A recent
example is the work of Boss on the formation of giant planets.(5) Three-
dimensional hydrodynamic equations were solved numerically starting
from an initial spinning disk of gas, and it was found that the evolution
leads to spiral density waves, in which there eventually form singularities in
the material density. The idea that this might represent a mechanism of
planet formation dates back at least to Kuiper.(6) Boss argues that in his
simulations the mass of these planets was of the order of magnitude of the
masses of "giant planets" like Jupiter(7) and that therefore gravitational
instability is a possible formation mechanism. A competing idea for the
formation of giant planets, operating on a much slower timescale, is the
gradual accumulation of mass over long periods of time.(8) This divergence
of views for the mechanisms of planet formation reflects both the intrinsic
complexity in the dynamical equations governing three-dimensional gravi-
tational collapse, as well as the large range of timescales over which the
observable system has evolved. Astrophysical overviews can be found in
refs. 9-11. Studies in statistical physics have also addressed the nature of
gravitational collapse for systems of particles.(2)

A basic question of gravitational collapse is to determine the distri-
bution of mass and the formation of singularities starting from a uniform
density initial state. In 1969 Larson(3) proposed studying the simplified
problem of gravitational collapse with spherically symmetric dynamics and
quiescent isothermal uniform density initial conditions. Although the rela-
tionship of this problem to the full problem is unclear, it allows both
numerical and semi-analytical progress regarding the different stages of
collapse. Larson solved the compressible Euler equations, supplemented by
radiation, heat transfer and chemical reactions for a marginally unstable
spherically symmetry cloud of one solar mass, and developed a unified
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scenario for the different stages of the collapse which he identified as the
precursor of star formation. In the earliest stage, for material densities
approximately between 10–19g/cm3 and 10–13g/cm3, the collapse is iso-
thermal and is described by the compressible Euler equations with an iso-
thermal equation of state. For these equations, there is a similarity solution
which describes the formation of a singularity of the material density. This
similarity solution was discovered independently by Penston,(13) and is
called the Larson-Penston solution; the discovery of this solution led
researchers to believe that all gravitational collapse singularities occur in a
self-similar way with the universal features that (a) the farfield velocity field

approaches the uniform constant value u~–3.3c where c is the speed of
sound in the homogeneous gas, and (b) the density decays algebraically of
the form p~8.9r–2 as r-* oo. This solution also predicts that the mass
involved in the initial collapse is much smaller than the mass of the cloud.

The universality of the Larson-Penston solution was criticized by
Shu,(14) who pointed out that it was the solution of a very specific bound-
ary value problem that was not representative of initial conditions expected
in most situations. In particular, Shu argued that it is necessary for the
boundary conditions on the cloud to have the far-field infall velocity of
— 3.3c. Namely that far from the center of the cloud all of the mass
experiences a uniform inward velocity of 3.3 times the speed of sound. As
an alternative scenario, Shu proposed that the relevant physical problem is
the determination of the flow following the formation of a core with a small
mass. With this modification, he demonstrated that there is a one param-
eter family of similarity solutions governing the collapse so there can be a
continuous dependence of the infall velocity on p0. Although this solution
circumvents the difficulty of a universal infall velocity, it has the unsatisfac-
tory feature that it assumes the existence of an initial core, without address-
ing its formation mechanism.(15) Subsequent numerical simulations(16, 17)

have demonstrated that the far-field limit of the infall velocity, to u ~ — 3.3
is established dynamically during the collapse process. Gravitational
collapse is an example of the formation of a localized singularity; as the
collapse time is approached the lengthscale describing the region of the
collapse becomes vanishingly small. Thus, as the collapse proceeds, the far-
field of the solutions occurs not far from the collapse point in absolute dis-
tances. In terms of matched asymptotic expansions, the collapse dynamics
describe an inner solution that must connect to a slowly varying outer
solution describing the remainder of the interstellar cloud. Another aspect
of Shu's criticism is more difficult to dismiss: consider the collapse
dynamics in a spherical cloud of constant radius with increasing initial den-
sity p0. At very small p0, pressure overwhelms gravitational attraction so
collapse does not occur. At a critical density, the cloud will collapse, and
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form a singularity. Upon increasing the initial density p0 far above the criti-
cal density, the collapse becomes more violent. Eventually, the infall
velocity will exceed —3.3c. This argument suggests that far above the
collapse threshold, the infall velocity should somehow depend on p0. The
strange feature of positing the Larson-Penston solution as a "universal"
collapse dynamic is that it means that the final value of the infall velocity
is independent of p0.

The primary goal of this paper is to resolve this issue by presenting a
detailed analysis of the collapse dynamics of a spherical cloud as a function
of its initial density p0. At sufficiently low density, thermal pressure is more
important than self gravitation and the cloud does not collapse. Beyond a
certain first threshold for the initial density, collapse occurs. At intermedi-
ate densities the asymptotic dynamics is described by the Larson-Penston
solution. The mass contained in the resulting collapsed region is orders
of magnitude smaller than the mass of the total cloud. We demonstrate
the existence of a second threshold for the initial density, above which the
collapse dynamics qualitatively changes. This threshold occurs when the
free fall time for a particle at the edge of the cloud is shorter than the time
for sound wave propagation across the cloud. In this regime, collapse to
infinite density occurs in the center of the cloud before density inhomoge-
neities can propagate into the center of the cloud. In contrast to the
Larson-Penston solution, the resulting collapsed region has a finite mass,
on the order of the total mass in the cloud.

However, the uniform density core of this collapsing solution is
dynamically unstable to a Jeans-like instability; before complete collapse
occurs there can be a transition to another behavior. From numerical
simulations we demonstrate at least three possible outcomes: either the
solution collapses to infinite density and infinite infall velocity with a spa-
tially uniform core; the solution converges onto the Larson-Penston solu-
tion (in which, as above, an extremely small percentage of the total cloud
mass contributes to the ultimate collapse) and has a finite infall velocity; or
the density profile becomes nonmonotonic, and develops a shock in the
velocity which propagates towards the center of the cloud. This first and
third scenarios appear to be novel mechanisms for spherically symmetric
collapse. Taken together, our results present a unified picture of how the
collapse dynamics changes with increasing material density in the cloud,
and provides an alternative resolution to Shu's criticism, in which it is
unnecessary to assume an initially static core.

This paper is organized as follows: Section 2 describes two different
formulations of the initial value problem, and introduces the dimensionless
parameter describing the initial data. Section 3 then demonstrates the exist-
ence of the nonlinear threshold described above, and gives the uniform-core
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where p is the density, v is the velocity, P is the gravitational potential,
p is the pressure field and G=6.67 × 10–11 Nm2/kg2 is Newton's gravita-
tional constant. The pressure is determined by the heat transfer conditions.
During the collapse, the gas will be heated by compressional heating, and
cooled by radiation. It is commonly assumed(3) that the net result of the
heat transfer is that the gas is isothermal until the densities are high enough
that the core is optically thick. We will follow this assumption herein, and
consider an isothermal equation of state p = c2 p, where c is the speed of
sound in the initial uniform quiescent interstellar gas.

If the size of the cloud is sufficiently large it will collapse. The collapse
results in a clumping singularity, in which the material density diverges at
the origin in finite time. A rough estimate for the critical size of the cloud
can be computed by linear stability analysis of equations (l)-(3) in
unbounded space; perturbations of a uniform, infinitely extended fluid
grow if their characteristic wavelength is larger than the Jeans(18) wave-
length Xj = 2nc/y/4nGp0, where p0 is the initial density. Clouds with radii

solution describing the collapse above this threshold. Numerical simulations
as a function of the governing parameter are presented. Above a critical
value it is demonstrated that either spatial nonuniformities in the initial
data or small fluctuations in the force balance can destabilize the uniform-
core solution. Two types of subsequent dynamics are distinguished,
depending whether the density profiles are monotonic or nonmonotonic.
Section 4 discusses similarity solutions, and focuses on the asymptotics of
the collapse near the singularity. Section 5 describes subtleties in designing
numerical algorithms for capturing the collapse, including the existence of
rather subtle spurious numerical solutions to the equations. The appendix
describes additional properties of the equations that are useful for inter-
preting our results.

2. GOVERNING EQUATIONS

In this section we use the equations governing gravitational collapse of
a compressible inviscid fluid to formulate the problem of the formation of
a protostar from a cloud of interstellar molecular gas. The governing equa-
tions for the conservation of mass and momentum, and the gravitational
potential are
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much larger than the Jeans length will typically fragment into a number of
different regions, in which the material density is rapidly growing.
A fundamental question (which to our knowledge has not yet been fully
answered) is to understand the final mass distribution and formation of
singularities that results from this dynamics, and how the distribution
depends on the initial size, shape and density of the cloud. Answering this
question requires considering the dynamics of a fully three-dimensional
collapse; observations(19) suggest there may be transient structures of more
complicated geometries intermediate between the initial constant density
regime and the final state consisting of spherical point masses. A statistical
mechanical study has revealed that in a finite closed system, the free energy
minimum consists of concentrated point masses.(12)

The issue addressed in this paper is to determine the nature of the
dynamics when spherical symmetry is enforced and the initial density of the
cloud is constant, as in Larson's original work. This model can be hoped
to serve as a good description of the intermediate asymptotics during
gravitational collapse. In the final stages of collapse, when very large den-
sities have been achieved, it is clear that many assumptions used to write
(l)-(3) will no longer hold. Similarly, many complications that could be
expected from realistic velocity fields and initial conditions have been
neglected. In solving this problem we assume that the idealized system is
capable of capturing some of the qualitative properties and parametric
dependencies, even if complications such as radiation effects, non-isother-
mality, angular momentum and general relativity will modify some quan-
titative results.

In light of this, the present study will examine the nature of the
collapse as function of the effective initial density of the cloud, without
regard to how far the cloud is from equilibrium. We consider a spherical
cloud of radius Rc with initially uniform density p0. There is a single
dimensionless parameter that describes the dynamics,
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This parameter is equal to the square of the ratio of the cloud radius to the
Jeans length RJ = c/^/47iGp0. N can be expressed as one over the square of
the Froude number, Yr = RJ/Rc, which represents the ratio of pressure to
gravity effects. The central goal of this paper is to describe the nature of the
collapse in terms of N.

We nondimensionalize the equations (l)-(3) by scaling densities in
terms of p0, lengths by the cloud radius Rc, and timescales in terms of



Rc/c. In dimensionless units, the spherically symmetric equations of motion
become

defined for each instant in time. The characteristic equations (9), (10) form
a timelike coupled system, while the characteristic (11) defining the gravita-
tional force is space-like and decoupled. In most studies of gravitational
collapse the gas cloud is initially taken to be at rest or near equilibrium.
When the velocity u is small, the C+ characteristics propagate outward (9),
while the C_ characteristics propagate toward the origin (10). Under con-
ditions where collapse occurs, the material infall velocity can become large
and negative. In regions of space where the flow is supersonic, u< – 1,
both families of characteristics carry information toward the origin. The

Brenner and Witelski 869

where the gravitational force f = pr is given by

corresponding to the evolution equations on the characteristics

An important property of equations (5)-(7) is that they are hyperbolic.
Despite the elliptic Poisson equation (7) for the gravitational potential, the
overall system of equations can be expressed in terms of Riemann variables
evolving on characteristics.(20) The properties of similar gas dynamic
models have been extensively studied in relation to shocks and spherical
waves(21–23) and the isothermal model.(24) The Riemann variables for this
system are



hyperbolicity of this problem is an important feature in the calculations
presented herein, both in establishing several important exact relations
about the collapse, and in formulating and assessing the reliability of
numerical schemes for solving the equations.

3. STAGES OF THE COLLAPSE

This section describes the various regimes of behavior which occur
during gravitational collapse of a finite mass, finite size gas cloud in
otherwise empty, unbounded space. For N below a critical value, gravita-
tional forces are not large enough to overcome pressure, and collapse does
not occur. The collapse threshold occurs roughly when the cloud radius is
of order the Jeans wavelength. The opposite limit (N-* oo) corresponds to
a cloud with finite initial density but infinite extent. In this case, the
material density increases in time but (in the absence of external perturba-
tions) remains spatially uniform within a core region in the interior of the
cloud throughout the collapse (see Fig. 1). Spatial uniformity within this
central core can only broken by the growth of small perturbations due to
inhomogeneities or external forcing. As the material density increases, the
characteristic Jeans scale where nonuniformity can occur decreases. At a
finite N, there are two distinct mechanisms for generating spatial non-
uniformity in the center of the cloud: first, in the N -> oo limit, spatial
perturbations to the constant density core tend to grow; secondly, the
boundary conditions at the edge of the cloud causes a density gradient to
form, which propagates in towards the origin.

Many earlier studies have considered the problem of a self-gravitating
cloud contained within a fixed finite region of space with no-flux boundary
conditions at the edges of the domain.(3, 17, 16) We will show that the details
of gravitational collapse do not depend on the nature of the far-field
boundary conditions. Consequently, we consider the slightly more realistic
problem of a finite self-gravitating cloud released in free space. For the pur-
pose of computations, our numerical simulations describe a cloud of inter-
stellar gas starting from rest with an initially uniform density on a finite
region, 0 < r < 1, with either an absorbing or a no-flux boundary condition
at r = 1. The results of these simulations describe the interior, 0 < r << 1, of
a self-gravitating cloud in unbounded space, 0 < r < oo, when waves reflected
from r = 1 are neglected. As will be discussed further, the nature of the far-
field boundary condition will not qualitatively change many properties of
the collapse behavior, as has been shown in other studies using various
boundary conditions at the edge of the cloud.(17) This property is a conse-
quence of the nature of the collapse forming a spatially localized singularity
that will ultimately be independent of the far-field behavior in the problem.
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Fig. 1. Full numerical simulation of the gravitational collapse for N=10. The simulation
was halted shortly before the formation of the singularity, when the density at the origin
reached p =1050. As will be discussed later, following the initial transient behavior, the solu-
tion follows a self-similar evolution.

A representative example of the dynamics above the marginal collapse
threshold (N= 10) is given in Figs. 1 and 2. The initially uniform cloud
rapidly develops a central core of increasing density. As the critical collapse
time, when infinite density is achieved, t -»tc is approached the density
increases, the core radius decreases and the lengthscale of the solution
decreases. This behavior makes it convenient to plot p and u on
logarithmic scales. Figure 1 shows that the density profile obeys p~r–2

away from the high density core, and the velocity asymptotes to a constant
near —3.3 times the sound velocity.

3.1. The Constant Density Core

To understand the numerical solutions it is useful to first develop a
theory for the dynamics of the constant density "core" region of the gas
cloud. Our aim is to both provide a more complete picture of the dynamics
as a function of N, and to derive a formula for how the amount of mass
that eventually collapses depends on the properties of the initial cloud, N.

Fig. 2. Numerical simulation of the initial stages of gravitational collapse for N= 10. The
envelope showing the edge of the uniform density region f(t) (See Subsection 3.1) is shown
with dashed lines. At N= 1 0 < N c the radius of the uniform core vanishes when p=2200.



A formula for the radius of the uniform density region follows from
examining the propagation of the influence of the edge of the cloud. In our
numerical simulations, the influence of the outer boundary conditions is
equivalent to assuming some sharp profile for the transition between p = 1
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Initially it is assumed that the entire cloud is at rest with constant density.
The conditions at the edge of the cloud break the uniformity of the density.
As the collapse progress, the region of uniform density contracts to a
smaller and smaller portion of the cloud, with the radius being determined
by the region of influence of the cloud boundary; this is a direct conse-
quence of the hyperbolicity of the equations. We will see below that under-
standing the dynamics of this uniform density region is critical to under-
standing how much of the mass of the cloud collapses to a point. The
mathematics of our analysis generalizes previous work of Hunter,(16)

though our point of view is different: whereas he considered the constant
density solution as the leading term in a Taylor series expansion about the
origin, we claim that the constant density region holds exactly in a finite
region surrounding the origin for a period of time. The constant density
solution takes the form

Substituting into (5)-(7) yields

This system exactly describes a large neighborhood of the origin when spa-
tial gradients have not propagated in from the edge of the cloud. We
remark that since the density is assumed uniform in the core of the cloud,
the pressure gradient term in (6) is absent in (13); this is sometimes called
a homologous collapse or is described as free-fall behavior. It is clear from
these equations that both the density and the magnitude of the velocity
gradient will monotonely increase in time. System (13) can be solved
implicitly for a cloud with initial density p = 1 at rest with initial velocity
u = 0. The uniform core density and velocity gradient are given implicitly
by
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and p->0 outside the cloud. Solving a spherical Riemann problem at the
edge of the cloud would yield possible contact discontinuities and shocks
propagating outward; these waves will not influence the dynamics of the
collapse and can be neglected for our purposes. In studies where the cloud
is held within a finite container, these outgoing waves will be reflected and
can lead to convergence to the Emden equilibrium gas sphere solution.(25)

The velocity "rarefaction wave"(22) propagating toward the origin, and its
reflection from the origin determine the dynamics of collapse. Since the
equations (5)–(7) are hyperbolic, the influence of the edge of the cloud
moves at the velocity of the fastest inward characteristic,(20) C_ (10), given
by

Using (14) yields a relation between the core radius and the density,

The hyperbolicity of the dynamical equations implies that for radii less
than r, the density profile remains spatially uniform, p = p(t) for r<r(t).

To determine the final state resulting from the evolution of the
uniform core we determine tf time to when the radius of the uniform den-
sity region vanishes, r(pf) = 0, to yield

For N <Nc = 3n2/2 % 14.8 the final core density will be finite at the time of
collapse, while for N > Nc, p becomes infinite simultaneously as the core
collapses f -* 0 at time tf. The above results can be combined to determine
the mass of the core, M = 4npr3/3. The mass is related to the density by

For 0 < N < 3n2/2, the mass of the uniform core vanishes when the radius
of the core region goes to zero since the density is finite, Mf = Anpfr^-^0.
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When p -> oo the radius of the core (16) also vanishes. Using this limit in
the solution of (19), we observe that the core collapses to a point with
finite mass for N>NC,

This formula shows that for N = 3n2/2 the collapsed core has zero mass,
while in the limit N -> oo the core will include the entire mass of the gas
cloud. Hence, in the absence of external perturbations to the uniform den-
sity region, when N > Nc the cloud collapses to a spatial point of infinite
density, with a mass given by equation (20).

Note that spatial nonuniformities or dissipative effects can effectively
reduce the size of the uniform core region; if the onset of nonuniformities
begins at r = f< 1 then Neff=f2N<N. A consequence of this is that the
critical value Nc = 3P2/2 can be increased by various factors; numerical
schemes that introduce dissipation, inhomogeneous initial conditions, and
numerous physical effects.

The following subsection examines the dynamics just above the mar-
ginal collapse threshold more closely, and illustrates the delicate competi-
tion between gravity and pressure waves which try to halt the collapse.
Then, we will turn to N > Nc, and present numerical simulations which
show the influence of spatial gradients from the edge of the gas cloud and
the accompanying pressure effects can not prevent the formation of a
uniform infinite density core region. In the absence of other perturbations,
this uniform density solution provides an exact description of the collapse.
However, this solution is generically unstable, so that if perturbations to
the density field exist, the collapse develops further spatial structure and
the dynamics follows a different collapse mechanism.

3.2. The Threshold for Collapse

While the above description of the dynamics of the uniform core
applies for all values of N, there is a certain minimum value NM < Nc

below which the evolution after tf disperses the cloud rather than collaps-
ing it. If the initial cloud radius is small, Rc << RJ, then collapse will not
occur. Collapse occurs roughly when Rc ~ RJ and gravitational attraction
can overcome pressure effects. A precise threshold follows from examining
stationary hydrostatic solutions of equations (5)–(7), which obey the
Liouville or Lane-Emden equation,(25–29)



This equation also arises in bacterial chemotaxis.(30, 31) The far-field
asymptotics, r-+ oo, for these stationary solutions are given by refs. 25, 16,
26, 31

We note in particular that the mass M = An \ pr2 dr of these solutions is
infinite for an isolated cloud in free space. Consequently, there is no
threshold value for N based on equilibrium solutions for finite mass clouds
in unbounded domains. Clouds that do not eventually collapse can expand
indefinitely. On the other hand, for systems in bounded domains the situa-
tion is different: Equilibrium solutions with finite mass exist, and have been
well studied, starting with the pioneering work of Emden (see references in
12, 29, 25). It should also be remarked that stationary solutions on a boun-
ded domain are also relevant for the dynamics in unbounded space as long
as the timescale of interest is much shorter than the time for absence of the
boundary to affect the dynamics inside the cloud.

M. Kiessling(32) has pointed out to us (private communication) the
interesting history associated with Emden's contributions to this subject,
which are contained in Emden's 1907 book.(25) The book contains both a
thorough discussion not only of the properties of the equilibrium solutions
in free space, but also, an entire chapter called "Gas balls in rigid confine-
ment" on the solutions in a finite region. Emden's central result is that
below a critical dimensionless temperature 0.39688, no equilibrium solu-
tions to the equation in a finite box exist. In the present language, since N
is inversely proportional to temperature, this turns out to correspond to a
maximum N = 3 ×(0.39688)–1 = 7.5, where the factor of 3 arises from dif-
ferent notations.3 The existence of a critical N in these equations in three
dimensions has been subsequently rediscovered many times in different
contexts (e.g., ref. 31). As a historical note, Kiessling also pointed out to us
that although Emden's book is not available in English translation, the

3 Emden's 1907 calculation of this number to five significant digits is a remarkable feat, con-
sidering that it requires accurately integrating a second order nonlinear ordinary differential
equation. Mathematica gives a critical temperature of 0.3972, which means that Emden's
calculation is correct to 3 significant figures! Emden's acknowledgements of help with this
calculation are particularly interesting: he states "... I still have the pleasant duty to thank my
students for carrying out a large part of the ensuing mechanical quadratures; my colleague
Mr. Dr. W. Kutta, whose approximation scheme was thereby applied, for his practical
advice, and for his communications on p. 92-95, in which the precision of the method and
its applications to differential equations of second order is explained; and last but not least
Mr. Prof. K. Schwarzshild in Gottingen,..." (Translation by M. Kiessling).
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"classical" part of Chandrasekhar's book(26) is based on the first ten chap-
ters of Emden's book. The discussion on confined gases is contained in
Emden's Chapter 11.

Our computer simulations of the dynamics allow us to estimate a
lower value of approximately NM = 6.6, in agreement with Larson's value
of NM=6.52. (3) For N<NM, pressure effects ultimately dominate over
gravity and a strong pressure wave reflects from the origin, increasing the
local velocity (see Fig. 3). At intermediate times before this outward wave
reaches the boundary of the cloud, the local density profile near the origin
closely resembles the structure of a quasistatic Emden solution of (21),

where p0 = p0(t) is slowly varying function of time that gives the density at
the origin. For longer times, the density po{t) will decrease with time and
yield deviations from the Emden solution, as determined by the influence
of the far-field boundary conditions. In particular, in unbouned space,
where there is no finite mass stationary solution, the cloud would then
completely dissipate.

To understand the significance of the critical value NM=6.6, it is
important to note that it is a nonlinear dynamic threshold. Below this
value, dynamically generated pressure waves can balance the effects of
gravitational attraction and prevent collapse. In a finite spherical geometry,
the critical value of NE = 7.5 mentioned above is derived from the condi-
tions needed for the existence of an non-collapsed equilibrium solution.
A linearly stable Lane-Emden solution exists for each N < 7.5 and should
be an attractor of the dynamics for initial conditions sufficiently close
to it.(12, 33, 34) The fact that we have calculated collapse occuring for

Fig. 3. Numerical simulation of the initial dynamics below threshold for N = 6. Initially the
velocity becomes negative, u < 0 , and the density increases at the origin under free-fall.
However, eventually, the influence of the cloud boundary reaches the origin and produces a
reflected pressure wave with u > 0, causing mass to spread out and density to decrease. The
density profile resembles a slowly-varying equilibrium solution ps(r, t).
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Fig. 4. Numerical simulation of the initial dynamics for the cloud slightly above threshold
at N = 6.75>NM. Gravitational collapse occurs as p – oo and the velocity remains negative
near the origin, u < 0. The reflected pressure wave steepens and forms a shock (yielding minor
oscillatory instabilities in the numerical scheme) as it propagates outward.

NM<N<NE suggests that the Emden equilibrium solution is not a global
attractor, and the uniform density initial state is far from equilibrium.

Indeed, Kiessling(12) also proved that there is a distributional station-
ary solution, corresponding to a collapsed state, that minimizes the free
energy, co-existing in the same regime as the linearly stable Emden solu-
tion. Hence, at thermodynamic equilibrium, his argument suggests that the
preferred configuration is the completely collapsed cloud. The implication
of this theorem is that for all finite N < 7.5 the linearly stable Emden solu-
tions are merely metastable, separated by a free energy barrier from the
preferred completely collapsed state.4 The significance of our number
N =6.6 is that it characterizes the initial condition on the borderline
between the basins of attraction of the collapsed state and the regular
stationary solution. When N>6.6, the free energy of the initial condition
is sufficient to overcome the "barrier" that surrounds the metastable
Emden solution.

For N>NM, while there is still a reflected pressure wave, it is not
strong enough to overcome the gravitational collapse; the velocity near the
origin remains negative while the local density diverges, p ->oo in finite
time. Note that the outgoing pressure wave steepens as it propagates, and
in Fig. 4 it has formed a velocity shock. The details of this shock at a finite
distance from the origin do not influence the localized structure of the
singularity. As N increases, gravity becomes more important and the reflec-
ted pressure wave has a smaller and smaller effect. This trend is illustrated
in Fig. 5, which shows the velocity profiles close to the critical time for a

4 We note that Kiessling's theorem states that the preferred state has all of the mass in the
system collapsed at the origin; our calculations do not follow the collapse this far when N
is low, as in this regime, the initial collapse only concentrates a very small fraction of the
total mass of the cloud, as discussed above. Presumably, (in spherical symmetry) the
dynamics after the first collapse will eventually lead to all of the mass collecting at the origin.
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Fig. 5. Comparison of the velocity fields u(r, t) at N = l, 8,..., 14, 15 very close to their
respective critical times. Initial behavior shows distinct transient wave interactions, but inde-
pendent of N, all cases converge to the same solution for t-»tc .

range of N between NM and Nc. The initial dynamics, at finite length
scales, show various transient responses, while as the collapse time is
approached, all of the solutions converge to the same velocity profile at
small lengthscales. This is the Larson-Penston similarity solution.

Another indicator of the influence of pressure on the collapse is the
collapse time, tc. In the absence of pressure, the collapse time would be
equal to the free fall time for matter to fall from the outside of the cloud
to the center. Figure 6 shows a comparison of the collapse time tc obtained
from numerical simulations and the free-fall time tf (17), (18). For N<NM

no collapse occurs, but the free-fall time is finite. On the interval NM<
N<NC, if underestimates the collapse time tc; below Nc, free-fall behavior
ends at if with a finite density at the origin, then further dynamics must
follow to yield the collapse, p -> oo. For N> Nc, if is a very good estimate
of the collapse time, but as we will describe below it is an upper bound,

Fig. 6. Comparison of the free-fall time tf (17), (18) with the collapse time tc obtained from
numerical simulations over a range of different values for N.
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Fig. 7. In contrast to the subcritical case, for N = 30> Nc, the velocity does not necessarily
saturate, and can grow indefinitely (in the absence of instabilities). The dashed line represents
the constant density solution. Errors due to limitations in the numerical scheme begin to
become apparent in the last profile.

because instabilities to the uniform core solution will hasten the collapse.
Finally, we note that slightly above NM, the collapse time obeys a singular
power law, tc~{N-NM)–0.3. Larson's original simulations(3) were done
not far above threshold, at N=7.3.

3.3. Instability of Uniform Density Supercritical Collapse

For N> Nc, the uniform core solution describes that both the density
of the core and the maximum gas velocity becomes infinite at some finite
critical time tc. This is demonstrated in a numerical simulation in Fig. 7,
which shows the velocity becoming very large and negative for N = 30.

However, we expect the dynamics of, the collapse to deviate from a
uniform core, one cause is nonuniformity in the initial conditions. Another
is that even for perfectly uniform initial conditions, the uniform density
state is unstable against small fluctuations. One can see this qualitatively
by noting that the Jeans scale 2n/y/pN ~{tc – t) is asymptotically smaller
than the radius of the uniform density region, which is of order {tc – t)2/3.

To demonstrate the instability of the uniform core, we study the evolu-
tion of small perturbations to the uniform density solution constructed
above. Since we are interested in the dynamics close to the collapse, it is
convenient to use the asymptotics of the uniform solution (14), (16) in the
limit that p -» oo
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where the time to collapse is x = tc–t and the critical time is

To compute the stability of the spatially uniform solution for 0 < r < r ( t ) as
t-* tc, we consider the following perturbations to the core

where the independent variables for the perturbation are

Substituting (26) into (5)-(7) and retaining leading order linear terms as
T -> 0 yields

Eliminating E2U in these equations yields an equation for the growth of the
perturbation Y = E2R,

Solutions of (30) have exponential growth rates k= 1, –f, where in terms
of physical variables, X = 1 corresponds to the unstable perturbations

where F{£,) gives the spatial form of the perturbation. Note that this
linearized stability analysis yields no constraints on the form of F(£).
Hence, at linear order, disturbances of any form can grow on the curves,
£, = const, which correspond to the inward family of characteristics. Thi
wavelike propagation of the perturbations to the uniform core solution
reflects the hyperbolic nature of the governing equations. Note that as
T -> 0, the core density grows like O(r2) but the perturbation grows at the
faster rate O(t~3) and hence the uniform core solution is unstable.
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A simple interpretation of the r –3 growth law is that it corresponds
to the perturbation shifting the blow up time tc by a small amount. On
changing tc->tr + S, the maximum density changes from 0({tc —1)~2) -»
O((tl, + 3~t)^2) = O((tl.-t)-

2 + S(t<~t)-3). Spatial nonuniformity is
produced when different spatial locations try to collapse at different times.

We now present simulations demonstrating what happens after the
instability of the core. Extensive numerical simulations have revealed two
different types of qualitative behavior; either the density field remains
monotone throughout its evolution, and the solution approaches the same
asymptotics seen for N<NC, or the density field becomes nonmonotone,
and does something qualitatively different.

First we show an example of monotone collapse at N = 30. A one per-
cent random spatial density perturbation is added to the initial gas cloud.
Figure 8a shows the density profiles, and Fig. 8b shows the velocity
profiles. The behavior follows the uniform core solution up to p~ 106, after
which a transition occurs that leads to the Larson-Penston similarity solu-
tion. This is clearly seen in the velocity plot; at late times, the infall velocity
asymptotes to the Larson-Penston value of —3.3.

To illustrate the other possible mode of perturbed behavior that we
observed, two simulations resulting in nonmonotone density profiles are
shown (see Figs. 9 and 10). First, we consider N = 50, with a one percent
random fluctuation in the initial density. Figure 9 shows that the uniform
density core persists until p ~ 106, after which time a nonmonotonicity in
the profile develops. Corresponding to the density, the velocity profiles
steepens and appears to form an inward propagating shock. The steepness
and intensity of the shock appear to be directly related to the magnitude
of the nonmonotonicity of the density profile. Further, more sophisticated
numerical simulations will be needed to accurately resolve the latter stages
of the evolution of this solution.

Unstable nonmonotone density profiles can also be triggered by
stochastic forcing in the equations. Figure 10 shows a simulation at N = 50,

Fig. 8. Convergence to the Larson-Penston solution at N = 30 with instabilities to the
uniform core solution initiated by small random fluctuations in the initial density profile.
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Fig. 9. Formation of a nonmonotone profile at N = 50 stimulated by 1 % noise in the initial
data.

with uniform initial conditions but with small stochastic perturbations
added to the momentum equation. The small perturbations yield an
instability at p ~ 106, and again a shock-like structure forms in the velocity.

Instabilities in the solution can also arise from various discretization
errors in numerical schemes. As will be discussed later, solution of problems
that form localized singularities require numerical schemes that allow for
highly adaptive spatial grids and time-steps to maintain adequate resolu-
tion of the singularity. Figure 7 for N=30 shows that our numerical
scheme accurately reproduced the uniform density core solution until
urn —400, when large velocity gradients caused numerical instabilities.
Note that this simulation suggests that numerical errors introduced are
relatively weak and would begin to effect the structure of the solution well
after the instabilities associated with the real perturbations introduced in
the earlier simulations.

This section has described some of the behavior observed in simulations
of collapse for N>NC and clearly suggests that the solutions of (l)-(3)
are unstable. This is in contrast to the behavior of gravitational collapse
for N<NC, where our simulations are independent of any perturbations

Fig. 10. Formation of a shock at N = 50 stimulated by small stochastic forcing in the
momentum equation.



added to the system and the solution ultimately converges to the Larson-
Penston similarity solution. In the absence of any perturbations, gravita-
tional collapse should be completely described by the uniform density core
solution; however this behavior was not expected to be stable. Yet, perturbed
solutions do not necessarily show a unique stable nonlinear attracting
behavior either, as solutions can settle down to the similarity solution or
develop shocks. The addition of perturbations to the solution can be used
to approximately incorporate and model the influences of effects not
included in the governing equations, for example turbulent flow in the gas
cloud. These points suggest that the asymptotic solutions describing
gravitational collapse for N > Nc are not universal. The basins of attraction
of the two asymptotic solutions found here are very close to each other. We
have not been able to find a definitive criterion for determining which solu-
tion occurs for given initial data.

4. SELF-SIMILAR SOLUTIONS

The analysis of the preceding section addresses the dynamics during
the first regime of the collapse, when the uniform density core collapses. In
both the subcritical, N < Nc, and supercritical cases, it was argued that this
initial regime cannot proceed indefinitely towards the collapse; in the sub-
critical case, this is because the initial regime only produces a finite density
at the origin. In the supercritical case, the dynamics is generically unstable.
This section begins to address the question of the final dynamics of the
collapse.

The question of the nature of the asymptotic collapse was first
addressed by Larson(3) and Penston,(13) who found a self-similar solution
of the hydrodynamic equations governing the collapse. Their solution is of
the form

where

and as collapse is approached t-+tc, s-> co. Substituting this ansatz into
equations (5)-(7) yields the evolution equations
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Physically, this choice of similarity variables uniquely balances inertia,
pressure and gravitational forces. As x -* 0, the influence of the boundary
of the domain is pushed out to n -* oo, hence there are no lengthscales in
the problem and self-similar dynamics can be expected. The formation of a
localized singularity in this system describes a finite-time self-similar blow-
up of density in a small neighborhood of the origin. Away from this
neighborhood, physical quantities must vary slowly as t-* tc, independent
of the fast timescale, s, describing the approach to singularity. This condi-
tion yields the asymptotic boundary conditions as n and r-* oo,

Equations (34)-(37) have steady-profile self-similar solutions that are
independent of s; R = R(n), U= U(t]). This type of solution is sometimes
called a progressing wave in gas-dynamics.(23) The problem for the self-
similar solutions can be reduced to a system of two first order ordinary
differential equations. An equation for Un in terms of U and R can be
obtained directly from (34). The gravitational potential P{n) can be elimi-
nated from,the remaining equations by noting that (34) and (36) can be
combined to produce Pn + R(U + n) = 0, yielding

For t] -> oo, a two-parameter family of solutions exists with R~ R^/t]2 and
U~ U^, satisfying boundary conditions (37). These equations have
singular points at the origin, n = 0, and at points satisfying the equation
(U + n)2 = 1. Expanding about n = 0, there is a one-parameter family of
solutions,



For gravitational collapse, ultimately the velocity everywhere is negative,
U<0, the C+ characteristics always propagate outward. In contrast, the
(€_ characteristics change direction at n*, where U(n*) = 1 – n*, with
characteristics for r}<tjif going to the origin, while characteristics for
r\>r\if propagating outward. The sonic point creates a separation between
an inner region, 0 < r\ ^ tj^, and an outer region of the flow for r\ > 77 . Th
information from the inner region can propagate out, but perturbations in
the outer region can not effect the inner region. Thus, the details of the
similarity solution governing the final collapse is independent of the far-
field behavior in the cloud. Note that due to the time-dependent stretching
of the spatial coordinates introduced by the similarity variables, the sonic
point is not the same as the position that separates supersonic flow, |«| > 1
from subsonic flow |w| < 1. Indeed, for the initial cloud starting from rest,
w = 0, the sonic point is tj^ = 1. In general, the position of the sonic poin
is a function of time rj^ = rj^(s) that must be obtained as part of the solu-
tion of a moving boundary problem for the similarity problem. We will
briefly discuss some of the details of the properties of stationary solutions

and the Riemann variables are
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where R0>0 is the scaled self-similar density at the origin. For Ro>2/3
the radial density profile is monotone decreasing, while for Ro < 2/3 it is
locally increasing at the origin. Also note that R = 2/3, U= —2rj/3 is a
exact, closed-form solution of (38), (39).

In the dilating reference frame defined by the similarity variables (32),
the points satisfying {U + tf)2=\ analogous to sonic points in transonic
flow,(23) where there is a qualitative change in the behavior of the charac-
teristics. This behavior can be seen by writing equations (34)-(36) in
characteristic form

where the gravitational force F is given by
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Fig. 11. Convergence of the solution for N= 10 to the Larson-Penston similarity solution,
RL(n), UL(r,).

at the sonic point in the appendix. Our numerical simulations suggest that
for all N<NC the dynamics converge to the Larson-Penston solution (see
Fig. 11). It is possible that the occurrence of the Larson-Penston solution
comes about from a connection between it's unique smoothness properties
and spatial discretization characteristics of numerical schemes. On analyti-
cal grounds we can not satisfactorily rule out the possibility of other
similarity solutions occurring during the dynamics as transient meta-stable
states.

It is possible to obtain more insight on the dynamics of collapse by
restating the uniform density model in terms of the similarity variables,
R(rj, s) = R(s), U(t], s) = U(s)rj, yielding the autonomous system

In this formulation, the phase plane has equilibrium points at {R, U) =
(0, 0), (0, - 1 ) and (f, - § ) which is a hyperbolic saddle point (See Fig. 12).
The line (7=0, Ro>0 corresponds to the set of initial conditions starting
from rest with uniform density. More specifically, the initial value of R
corresponding to p = 1 is given in terms of the collapse time tc as Ro = Nt2

c.
The stable branch of the hyperbolic saddle point (§, — §) intersects the line
£7=0 at the value Rc = 3rc2/8 « 3.7. This value of R separates the set of
uniform initial conditions into solutions whose density blows up faster than
the self-similar solutions and solutions whose scaled density approaches
zero. If Ro = Rc then the solution approaches the equilibrium steady-profile
similarity solution R = \, U= —2rj/3. Note that the value of the collapse
time corresponding to this solution is given by (25). For RO<RC, all solu-
tions approach the zero density fixed point at the origin. This behavior
suggests that either (a) no collapse occurs, or (b) the value of tc that has
been used is larger that the real critical time. For Ro> Rc, the density will
initially decrease to a minimum value then increase forever, R(s) -* oo
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Fig. 12. Plot of the numerical simulation for gravitational collapse at N= 10 on the (/?, U)
plane (solid curve). The positions of the saddle point ( j , —\) and the critical initial scaled
density Rc = 3JT2/8 « 3.7 are shown.

while £/-> — oo in a monotone way. This behavior describes a collaps
singularity that blows up faster than the similarity variables. In fact, the
eigenvalues of the saddle point are A = — § and X — 1, so the unstable den
sity solutions actually blows up like R~es or in terms of real variables
p~{tc —1)~3. This behavior is the same as that computed via direct
stability analysis in the previous section; its physical interpretation (as an
indication of a change in tc) is therefore identical.

In Fig. 12 we plot the results of the numerical simulation for N= 10
on the (R, V) phase plane, where the value of rc«0.635461134336 was
obtained from the simulation. We note that ^ 0 > Rc and the initial
dynamics of the solution follow the uniform core phase plane near the
unstable manifold of the saddle point. Eventually, as pressure effects
become significant, the solution displays large deviations from the uniform-
state trajectories. It should be noted however, that as the final collapse is
approached and the solution converges to a self-similar form, the local
expansion of the solution about rj = O must be given by (40) and hence
C7(s-» oo)-* - § and R(s-+ oo)-* Ro.

5. NUMERICAL SCHEMES AND SPURIOUS SOLUTIONS

One of the major challenges of this study was to design and evaluate
numerical algorithms for accurately computing the high TV collapse. The
dynamics above Nc is very sensitive, and slight errors in the numerical
scheme can lead to large errors in the amount of collapsed mass, as well
as the detailed dynamics. Apart from the specific problem of gravitational
collapse, precise computation of self-similar singularities is an important
feature occurring in many problems in fluid dynamics.(1)



These equations were discretized in a standard nonlinear fully-implicit
upwind finite-difference method.(35, 36) It is well known that such numerical
schemes introduce additional weak dissipative and dispersive influences.(24)

The nature of these influences can have a significant impact on the smooth-
ness properties of the numerical solution and ultimately, on the selection of
the similarity solution (see the Appendix).

An example using this numerical scheme with N= 1000 is shown in
Figs. 13 and 14. This simulation was performed with adaptive mesh refine-
ments along the lines of standard algorithms (e.g., Drury and Dorfi(37)).
Both the discretization and the regridding introduce perturbations and
dispersion into the numerical scheme, when compared with the hyperbolic
algorithm used in producing the results of the subsequent sections. The
initial dynamics looks much the same those in Section 3 with N>NC: a
constant density region is followed by a transition to a monotone density
similarity solution. However, there are a few important differences:

First, the destabilization of the constant density region occurs when
pKlO6, and is caused by perturbations induced by the remeshing algo-
rithm, which periodically adjusts the mesh to maintain resolution. In
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The calculations presented in the previous sections use equations (9)
and (10) for the Riemann variables on the characteristic curves to evolve
the density and velocity. To sufficiently resolve the solution as the density
grows rapidly over decades of magnitude and the lengthscales become
exceedingly small it is crucial to use efficient adaptive time-stepping and
spatial regridding. Our explicit numerical scheme used Euler time-stepping
combined with cubic spline interpolation to project the characteristics back
onto the grid points. As spatial structure developed on finer lengthscales,
the numerical scheme projects the solution onto a new log-uniformally-
spaced grid starting at smaller scales. This method was found to produce
sharp, well resolved numerical results that closely matched the uniform
core analytic solution (see Fig. 2).

Major pitfalls were encountered in using other numerical schemes
which can become underresolved, or which do not respect the hyperbolic
nature of the governing equations. An alternative formulation of the
problem for (5-7) given in terms of the cumulative mass m(r, /) ( 1 6 ) is
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Fig. 13. Evolution of density and velocity fields for N- 1000, using a code based on a
straightforward discretization of equations (46-48). profiles closer to the singular time have
higher central density. The density field obeys the r~2 law, and the velocity saturates to a
constant near the singularity, as expected from Larson-Penston scaling.

adjusting the mesh, smoothness in both the grid and in the profiles is main-
tained up to second derivatives (via cubic splines). This behavior is in
contrast,to simulations made with the hyperbolic algorithm in Section 3;
For example, the simulation in Fig. 8 only shows a transition to the
Larson-Penston solution because a perturbation is included to the initial
data; without perturbations, the constant-density solution should continue
indefinitely.

Secondly, although the asymptotic regime qualitatively looks like it
converges to the Larson-Penston localized solution, with p ~ r 2 law hold-
ing in the far field, there is a quantitative discrepancy. In particular, the
asymptotic infall velocity near the collapse point is u a — 7c, instead o
Larson's value —3.3c. Moreover, the solution appears to oscillate around
this value as it approaches the singularity. The scale of the oscillation is

Fig. 14. Blowup of the velocity field near the collapse point. The points represent mesh
points in the computation. Note that the velocity asymptotes to a constant away from the
collapse point, although the constant differs from the Larson-penston value - 3 . 3 . The
approach to the constant involves oscillations in space over about five decades.



about five decades of scaling, which is completely unrelated to the remesh-
ing algorithm. This is a serious discrepancy with the Larson-Penston
prediction, especially in light of the fact that the asymptotic value of the
velocity in the similarity solution is supposed to be universal.

The resolution of a velocity profile in the asymptotic regime is shown
in Fig. 14; the density of mesh points appears high. An important point is
that in this simulation, the sonic point occurs at about w« — 3. Althoug
outside of the sonic point, the density of points is high, there are only
about 10 points inside the sonic point. A priori, it is not clear that this is
a problem. However, the code that we used for the simulations in Section 3
only observes convergence to Larson's value of the infall velocity. We
therefore believe that the solution depicted in Figs. 13 and 14 might be
spurious. Comparing the two codes, there are two possible reasons for this
artifact: (a) The code used in Section 3 respects the hyperbolicity of the
equations, whereas the code used to produce Figs. 13 and 14 does not. It
could be that the spurious dissipation present in this code stabilizes solu-
tions that are unstable otherwise, (b) The low resolution around the sonic
point in this simulation could be the source of the problem.

As discussed in the appendix, we believe that the issue is that there is
a two parameter family of similarity solutions(38) that have the same
qualitative structure as Larson's solution, but with a continuous family of
different infall velocities. These additional solutions have discontinuities in
derivatives across the sonic point, and are individually unstable, as shown
originally by Ori and Piran(39)—and elaborated in the appendix. However,
it is unclear that the family of solutions does not take part in the dynamics.
In principle, it should be possible for a solution to perform an "orbit" in
the two parameter space of these additional solutions. We believe that the
simulation shown in Fig. 14 may represent such an orbit. The fact that we
do not see these solutions in our best simulations lead us to believe that the
numerical solutions depicted in the above figures are spurious, and that in
actuality the "orbits" in the two parameter family of similarity solutions are
unstable. We caution that this is not a rigorous argument but simply our
best guess based on the evidence at hand.

The upshot of these problems is that great care is called for if accurate
numerical simulations are necessary. These concerns are not only of
academic interest for the numerically inclined: if the collapsed mass is
defined as the mass contained in some threshold radius, i.e., 10~3 times the
initial cloud radius, then its value is very sensitive to the noise level and
accuracy of the simulations. For example, the amount of collapsed mass
contained in Fig. 13 is lower than would exist in a noise free simulation.
A corollary to this numerical warning is that physical fluctuations can have
a substantial effect on collapsed masses.
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6. CONCLUSIONS

The main result of this study is the identification of a nonlinear
threshold Nc = 3n2/2, above which the dynamics near the collapse point is
not universal. In this regime, three different collapse scenarios are possible,
depending on (slight) details of the initial data: (a) Collapse with a uniform
core, in which (of order) the entire cloud mass collapses to a point; (b) Col-
lapse via the Larson-Penston similarity solution, in which only a small
fraction of the total mass participates in the collapse, and the asymptotic
velocity near the collapse point is —3.3c; (c) An apparently new collapse
scenario, in which the density profile becomes increasingly more nonmono-
tone as the material density diverges, and the velocity profile tends to a shock.
For N < Nc, only the Larson-Penston scenario is possible. Above Nc, any
of (a), (b) or (c) can occur depending on the characteristics of the initial
conditions and noise sources.

We have also highlighted numerical difficulties that arise when trying to
capture the details of the collapse. Besides standard considerations (i.e., the
need for the numerical scheme to respect the hyperbolicity of the equations)
we have also found that underresolution can lead to (apparently) spurious
numerical solutions. Unless examined very carefully, the solutions all look
legitimate. This problem is compounded by the fact that near a singularity,
where characteristic scales are vanishingly small, a simulation that looks well
resolved in real space could be insufficiently resolved when scaled in terms of
the characteristic collapsing lengthscale. For a reason that might be very
specific to this particular problem, (the existence of a continuous family of simi-
larity solutions that our numerical simulations indicate is apparently unstable),
maintaining high resolution in similarity variables turned out to be crucial.

It is notable that this difficulty occurs in a problem which is relatively
simple, involving only one spatial degree of freedom. Questions of actual
astrophysical interest (e.g., Boss's(5) simulations on giant planet formation
mentioned in the introduction) require understanding the collapse dynamics
in three spatial dimensions. Since three-dimensional simulations necessarily
have far less resolution than the present study (e.g., Boss's simulations take
place on a 51 by 23 by 64 mesh), the difficulties reported here could occur
in these contexts as well. It is not clear how errors in resolving the detailed
collapse dynamics translate into errors in observable quantities like the
mass or angular momentum of a protostar. An important direction for
future research is to develop analytical and theoretical tests for answering
these questions, both with regards to the numerical algorithms, and to the
hyperbolic equations themselves. Perhaps the development of such ideas in
the context of one dimensional models will help improve and evaluate the
accuracy of larger scale simulations.
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The relevance of the present results for problems of astrophysical
interest has some limitations. These are at least two types of complications:
First, the assumption of isothermal dynamics is a dramatic idealization,
and will at best only apply over a finite number of decades of increasing
material density. Some of the features uncovered in this study require
several decades of scaling to develop. The complications to isothermal gas
dynamics include heat and radiation transfer, the influence of magnetic
fields, and many other factors.(9, 11) Perhaps an even more significant
assumption is the restriction to spherically symmetric collapse, with zero
angular momentum. In this regard, this work has the same deficiency as the
original studies of Larson. Both Shu(14) and Larson(40, 41) have emphasized
that the determination of the relevant mass of the collapsing spherical object
(or alternatively, the relevant parameter N) depends on the mechanisms
for clumping in the fully three-dimensional dynamics. Larson(41) has
suggested an intriguing connection between the masses of clumps, and the
geometrical structures from which they form. From this viewpoint, a con-
clusion of the present study is that the qualitative dynamics of the final
collapse is sensitive to the mass of the collapsing object, and hence the
geometrical structures forming in fully three-dimensional collapse.

Finally, from the perspective of the general problem of singularity for-
mation in nonlinear partial differential equations, the present study appears
to have the novel feature that above a critical threshold Nc in initial data,
the asymptotic collapse state is not universal. Three different possible
asymptotic states have been given (one of which was previously identified).
Very slight changes in initial data can lead to transitions between the
different asymptotic states. We do not know whether this property is a
peculiarity of the present problem, or is a general property of dissipation/
dispersionless singularity formation.

APPENDIX A: SOLUTIONS OF THE SIMILARITY EQUATIONS

The goal of this appendix is to describe additional properties of the
similarity equation, which are important for understanding and interpreting
results of numerical experiments. It turns out that there is an additional two
parameter family of the similarity equations, discovered originally by
Wentworth and Summers(38) which were previously argued to be unstable.(39)

Herein, we present our own derivation and interpretations of these addi-
tional solutions. We demonstrate that these solutions have the peculiar
property of having discontinuities in higher derivatives at the sonic point.
(The order of the discontinuity can be made arbitrarily high by moving
about in the two parameter family). The upshot of our discussion is that
although we agree with previous authors that these solutions exist and that
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they are individually unstable, the stability arguments do not rule out
orbits in the two parameter family of additional solutions. These orbits
would be characterized by different asymptotic values of the parameters
(i.e., velocity far from the collapse point). One set of our numerical simula-
tions (described in Section 5) displays solutions which appear to resemble
these orbits; for the reasons discussed therein we believe these are spurious
numerical solutions. However, we are not able to rule out the existence of
such solutions in numerical simulations and hence it is possible that our
description of the dynamics for N > Nc is an oversimplification.

We now proceed to derive the additional solutions. As stated above,
our discussion is in the same spirit as Wentworth and Summers,(38) though
the argument appears more straightforward. The sonic point tj^. of a solu-
tion is a movable singular point of (38), (39) defined by f/(̂ Hc) + ^# = 1.
Analysis of the local expansion around I* yields important information
about the structure of the set of similarity solutions. Requiring rj^ to be a
removable singularity yields two possible analytic Taylor series expansions,
denoted type-l(16, 14)

and type-2,

Any possible smooth solutions must have one these two local forms.
Global solutions must additionally satisfy the boundary conditions at the
origin tj = O (40). The Larson-Penston solution is a type-2 solution with
j / + as2.34, while the closed-form exact solution, R = \, U=—2TJ/3, is a
type-1 solution with >/* = 3.

Simple counting arguments would then imply that there is a unique
(or at most, a countable) set of solutions connecting the origin to the sonic
point (since naively one condition is specified at each location), so that
there should be (at most) a countable set of solutions to the similarity
equations. This type of reasoning originally led Larson to find his solution
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Fig. 15. A continuous family of inner similarity solutions on 0 < A / < / / , , parametrized by
(*?»» U'(i*)- The numerical solutions are compared with t/'C7») for the type-l, U']{r/t) =
1 ^ ^ _ 1 ( and type-2, U'2(>it)= —1/'/» analytic solutions. The Larson-Penston solution with
/;„ a 2.34 is the unique type-2 solution found here.

(see Fig. 11). In fact, the position of the sonic point serves to decouple the
problem into two intervals; an inner solution for O^^^v*. and an outer
solution for rj+<ri<oo. Numerical solution of the inner problem shows
that while Larson's solution is the unique smooth type-2 solution, there is
a continuous family of solutions parametrized the sonic point for all rj^ > 2
(see Fig. 15).

It turns out that the situation is more complicated than a simple
counting argument would suggest, a fact that was first appreciated by
Whitworth and Summers.(38) The reason for this can be seen by writing the
equations near the sonic point as an autonomous system and then con-
sidering the linear stability in the neighborhood of rj^. To do this we must
introduce a change of variables that converts the sonic point from a
removable singularity of the equations to an equilibrium point.(42) Let

where the change of variables is defined by
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This third order system has the one-parameter continuous family of equi-
librium points,

for any choice of r/^ >0 . The Jacobian matrix for the linearization about
this equilibrium point is

The eigenmodes for the system J1|1x = Ax, for any rj^ are given by;

1. A zero eigenvalue that corresponds to the continuous symmetry of
picking a different sonic point, rj^ -* rj^ + e,

yielding the linearized eigenmode

2. An eigenmode corresponding to the Ult Ri solution

3. An eigenmode corresponding to the U2, R2 solution
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For rjit> 1, both X2 > 0> -*i > 0 and the sonic point is an unstable node with
a continuum of solutions connecting to it (see Fig. 16). For ?/* > 2, ^2 > A,,
the set of solutions going through rj^ can be written as

where

Suppose Aj , Af define a right-solution for r/^-rj^ and A2 , A\ define a
left-solution for rj^rj^, then equation (A16) defines a solution U(tj) that
has k continuous derivatives at the sonic point.

To determine whether these solutions will be observed it is necessary
to determine their stability. Using the linear stability analysis of Hanawa
and Nakayama(43) for solutions on O^rj^tj^., it can be shown that all of
the solutions should be stable. A different approach, considered by Ori

Fig. 16. Local structure of the family of (/(*?) solutions near the sonic point t/t. The analytic
solutions (/,(»/) and C2(//) are the slow and fast manifolds going into the stable node
('/»• Wv*))- Physically relevant single-valued solutions lie in the sector bounded by U,{>/) an
U2(IJ).

Specifically, we can write the parametric solution
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and Piran,(39) focuses on the local structure of the solutions at the sonic
point r]^. They argued that jumps in the first derivative should grow for the
extra family of solutions, and hence that they are unstable. Here, we pre-
sent a refinement of their argument, with a different interpretation of the
results. Apart from the type-1 and type-2 solutions, all of the solutions con-
structed above lose continuity in derivatives at //+ at some order. However,
the sonic point defines a characteristic curve of the hyperbolic system (34),
(35) and weak solutions satisfying appropriate jump conditions across the
characteristic can exist. Carrying out a wavefront expansion(20) on the #_
characteristic at the sonic point shows that the n-th derivatives must satisfy

where an = an(s) is the jump magnitude and the jump in X across i]% is
defined as [X^] = X(rj*) — X(rj~). For <Jn->0, the jump magnitude
evolves according to

for n = 1, 2,.... This formula agrees with the result derived by Ori and Piran
via a more formal argument,(39) except in one important respect: since we
are testing the stability of a continuous family of solutions, we have
allowed >/„, to vary with time, which corresponds to a continuous symmetry
in the family of solutions (A11).

Without allowing for variations in //„,, equation (A19) for n=\
predicts instability if U'irj^) < — \, and stability otherwise. This condition,
given by Ori and Piran, implies that all type-1 similarity solutions are
unstable. However, if the variation of tj^ evolves appropriately (i.e., drj^lds =
2rjji\ + 2U'^)) stability at the sonic point is maintained, at the expense of
the time evolution moving around the family of type-1 solutions. Precisely
how this time evolution plays out requires coupling the evolution of r]^ to
that of U(f] -» oo) = U^, that is, the outer portion of the similarity solution.
Our most highly resolved numerical simulations do not observe evolution
on this family, so our evidence evidence is against evolution in this family
being stable. However, we emphasize that we cannot rule out that artificial
dissipation or dispersion in the numerical scheme causes these solutions to
(artificially) destabilize. We also remark that the simulations presented in
Section 5 using a different (but, we believe, less reliable) scheme resemble
evolution in this continuous family, with the asymptotic velocity U^
oscillating in space and time as the singularity is reached.
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